Unsupervised Object Annotation through Context Analysis
نویسنده
چکیده
The goal of object level annotation is to locate and identify instances of an object category within an image. Nowadays, Most of the current object level annotation systems annotate the object according to the visual appearance in the image. Recognizing an object in an image based visual appearance yield ambiguity in object detection due to appearance confusion for example “sky” object may be annotated as “water” according to similarity in visual appearance. As a result, these systems don’t recognize the objects in an image accurately due to the lack of scene context. In the task of visual object recognition, scene context can play important role in resolving the ambiguities in object detection. In order to solve the ambiguity problem, this paper presents a new technique for a context based object level annotation that considers both the semantic context and spatial context analysis to reduce ambiguous in object annotation. General Terms Image Annotation and Retrieval
منابع مشابه
A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images
Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...
متن کاملImproved Image Annotation and Labelling through Multi-Label Boosting
The majority of machine learning systems for object recognition is limited by their requirement of single labelled images for training, which are difficult to create or obtain in quantity. It is therefore impractical to use methods or techniques which require such data to build object recognizers for more than a relatively small subset of object classes. Instead, far more abundant multilabel da...
متن کاملUnsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
In this paper we study the problem of image representation learning without human annotation. Following the principles of selfsupervision, we build a convolutional neural network (CNN) that can be trained to solve Jigsaw puzzles as a pretext task, which requires no manual labeling, and then later repurposed to solve object classification and detection. To maintain the compatibility across tasks...
متن کاملAnnotation-based Distance Measures for Patient Subgroup Discovery in Clinical Microarray Studies
MOTIVATION Clustering algorithms are widely used in the analysis of microarray data. In clinical studies, they are often applied to find groups of co-regulated genes. Clustering, however, can also stratify patients by similarity of their gene expression profiles, thereby defining novel disease entities based on molecular characteristics. Several distance-based cluster algorithms have been sugge...
متن کاملWeakly Supervised Salient Object Detection Using Image Labels
Deep learning based salient object detection has recently achieved great success with its performance greatly outperforms any other unsupervised methods. However, annotating per-pixel saliency masks is a tedious and inefficient procedure. In this paper, we note that superior salient object detection can be obtained by iteratively mining and correcting the labeling ambiguity on saliency maps fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013